Zusammenfassung
Das Gebiet der Tumorzelldissemination beim Mammakarzinom hatte in den letzten Jahren
immer mehr an Bedeutung gewonnen. Durch den Nachweis disseminierter Tumorzellen im
Knochenmark und Blut wurde bewiesen, dass das Mammakarzinom prinzipiell eine systemische
Erkrankung ist. Die Daten der Pooled Analysis der Collaborative Bone Marrow Micrometastasis
Group bestätigten den Tumorzellnachweis im Knochenmark als unabhängigen prognostischen
Marker. Darüber hinaus ist die Prognose der Frauen mit Tumorzellpersistenz nach adjuvanter
systemischer Therapie im Vergleich zu den Patientinnen ohne Tumorzellnachweis deutlich
schlechter. In zukünftigen Studien müssen nun Therapieansätze evaluiert werden, die
die Eliminierung disseminierte Tumorzellen zum Ziel haben. Eine entscheidende Vorraussetzung
für die Durchführung von solchen (Multizenter-)studien ist, dass ein standardisiertes
Vorgehen zum Nachweis von disseminierten Tumorzellen im Knochenmark definiert wird.
Im Rahmen der Dreiländertagung der Gesellschaften für Senologie traf sich daher ein
internationales Expertenpanel aus Deutschland, der Schweiz und aus Österreich, um
die bestehenden Methoden zum Tumorzellnachweis im Knochenmark zu evaluieren sowie
einen Konsensus für den standardisierten Nachweis sowie die klinische Implementierung
festzulegen.
Abstract
Presence of disseminated tumor cells in blood and bone marrow (BM) has confirmed the
hypothesis of breast cancer as a systemic disease. Disseminated tumor cells (DTC)
are already present in 20-40 % of primary breast cancer patients without clinical
evidence of metastatic disease. A large pooled analysis has recently shown that the
presence of disseminated tumor cells in the bone marrow (BM) of primary breast cancer
patients (stages I-III) is associated with poor prognosis. Moreover, tumor cell persistence
after completion of adjuvant therapy identifies patients at a high risk for recurrence.
To date, sampling of BM and assessment of DTC is not considered a routine procedure
in the clinical management of breast cancer patients but emerging data suggests a
future role for risk stratification and monitoring of therapeutic efficacy. Since
these clinical options need to be evaluated in clinical trials, agreement on the standardized
detection of DTC is mandatory. Therefore, the German, Austrian and Swiss Societies
for Senology recently initiated an international consensus meeting 1) to define a
consensus for the standardized detection of DTC and to explore the options for its
clinical implementation.
Schlüsselwörter
Mammakarzinom - Tumorzelldissemination - Konsensustreffen - Prognose
Key words
Breast cancer - tumor cell dissemination - consensus meeting - prognosis
Literatur
1
Coombes R C, Berger U, Mansi J. et al .
Prognostic significance of micrometastases in bone marrow in patients with primary
breast cancer.
NCI.
1986;
1
51-53
2
Solomayer E F, Diel I J, Salanti G, Hahn M. et al .
Time independence of the prognostic impact of tumor cell detection in the bone marrow
of primary breast cancer patients.
Clin Cancer Res.
2001;
7
4102-4108
3
Porro G, Menard S, Tagliabue E. et al .
Monoclonal antibody detection of carcinoma cells in bone marrow biopsy specimens from
breast cancer patients.
Cancer.
1988;
61
2407-2411
4
Salvadori B, Squicciarini P, Rovini D. et al .
Use of monoclonal antibody MBr1 to detect micrometastases in bone marrow specimens
of breast cancer patients.
Eur J Cancer.
1990;
26
865-867
5
Mathieu M C, Friedman S, Bosq J. et al .
Immunohistochemical staining of bone marrow biopsies for detection of occult metastasis
in breast cancer.
Breast Cancer Res Treat.
1990;
15
21-26
6
Dearnaley D P, Ormerod M G, Sloane J P.
Micrometastases in breast cancer: long-term follow-up of the first patient cohort.
Eur J Cancer.
1991;
27
236-239
7
Cote R J, Rosen P P, Lesser M L, Old L J, Osborne M P.
Prediction of early relapse in patients with operable breast cancer by detection of
occult bone marrow micrometastases.
J Clin Oncol.
1991;
9
1749-1756
8
Wiedswang G, Borgen E, Karesen R. et al .
Detection of isolated tumor cells in bone marrow is an independent prognostic factor
in breast cancer.
J Clin Oncol.
2003;
21
3469-3478
9
Harbeck N, Untch M, Pache L, Eiermann W.
Tumor cell detection in the bone marrow of breast cancer patients at primary therapy:
Results of a 3-year median follow-up.
Br J Cancer.
1994;
69
566-571
10
Diel I J, Kaufmann M, Costa S D. et al .
Micrometastatic breast cancer cells in bone marrow at primary surgery: prognostic
value in comparison with nodal status.
J Natl Cancer Inst.
1998;
90
1099-1101
11
Funke I, Fries S, Rolle M. et al .
Comparative analyses of bone marrow micrometastases in breast and gastric cancer.
Int J Cancer.
1996;
65
755-761
12
Mansi J L, Gogas H, Bliss J M, Gazet J C, Berger U, Coombes R C.
Outcome of primary-breast-cancer patients with micrometastases: a long-term follow-up
study.
Lancet.
1999;
354
197-202
13
Braun S, Pantel K, Muller P. et al .
Cytokeratin-positive cells in the bone marrow and survival of patients with stage
I, II, or III breast cancer.
N Engl J Med.
2000;
342
525-533
14
Gerber B, Krause A, Muller H. et al .
Simultaneous immunohistochemical detection of tumor cells in lymph nodes and bone
marrow aspirates in breast cancer and its correlation with other prognostic factors.
J Clin Oncol.
2001;
19
960-971
15
Gebauer G, Fehm T, Merkle E. et al .
Epithelial cells in bone marrow of breast cancer patients at time of primary surgery:
clinical outcome during long-term follow-up.
J Clin Oncol.
2001;
19
3669-3674
16
Pantel K, Brakenhoff R H.
Dissecting the metastatic cascade.
Nat Rev Cancer.
2004;
4
448-456
17
Braun S, Vogl F D, Naume B. et al .
A pooled analysis of bone marrow micrometastasis in breast cancer.
N Engl J Med.
2005;
353
793-802
18
Wiedswang G, Borgen E, Karesen R. et al .
Isolated tumor cells in bone marrow three years after diagnosis in disease-free breast
cancer patients predict unfavorable clinical outcome.
Clin Cancer Res.
2004;
10
5342-5348
19
Braun S, Kentenich C, Janni W. et al .
Lack of effect of adjuvant chemotherapy on the elimination of single dormant tumor
cells in bone marrow of high-risk breast cancer patients.
J Clin Oncol.
2000;
18
80-86
20
Janni W, Rack B, Schindlbeck C. et al .
The persistence of isolated tumor cells in bone marrow from patients with breast carcinoma
predicts an increased risk for recurrence.
Cancer.
2005;
103
884-891
21
Janni W, Hepp F, Rjosk D. et al .
The fate and prognostic value of occult metastatic cells in the bone marrow of patients
with breast carcinoma between primary treatment and recurrence.
Cancer.
2001;
92
46-53
22
Naume B, Borgen E, Kvalheim G. et al .
Detection of isolated tumor cells in bone marrow in early-stage breast carcinoma patients:
Comparison with preoperative clinical parameters and primary tumor characteristics.
Clin Cancer Res.
2001;
7
4122-4129
23
Bauer K D, de la Torre-Bueno J, Diel I J. et al .
Reliable and sensitive analysis of occult bone marrow metastases using automated cellular
imaging.
Clin Cancer Res.
2000;
6
3552-3559
24
Wiedswang G, Borgen E, Karesen R, Naume B.
Detection of isolated tumor cells in BM from breast-cancer patients: significance
of anterior and posterior iliac crest aspirations and the number of mononuclear cells
analyzed.
Cytotherapy.
2003;
5
40-45
25
Borgen E, Naume B, Nesland J M. et al .
Standardization of the immunocytochemical detection of cancer cells in BM and blood:
I. Establishment of objective criteria for the evaluation of immunostained cells:
The European ISHAGE Working Group for Standardization of Tumor Cell Detection.
Cytotherapy.
1999;
5
377-388
26
Pierga J Y, Bonneton C, Vincent-Salomon A. et al .
Clinical significance of immunocytochemical detection of tumor cells using digital
microscopy in peripheral blood and bone marrow of breast cancer patients.
Clin Cancer Res.
2004;
10
1392-1400
27
Choesmel V, Anract P, Hoifodt H, Thiery J P, Blin N.
A relevant immunomagnetic assay to detect and characterize epithelial cell adhesion
molecule-positive cells in bone marrow from patients with breast carcinoma: immunomagnetic
purification of micrometastases.
Cancer.
2004;
101
693-703
28
Kraeft S K, Sutherland R, Gravelin L. et al .
Detection and analysis of cancer cells in blood and bone marrow using a rare event
imaging system.
Clin Cancer Res.
2000;
6
434-442
29
Naume B, Nesland J M. et al .
Use of automated microscopy for the detection of disseminated tumor cells in bone
marrow samples.
Cytometry.
2001;
46
215-221
30
Fehm T, Becker S, Pergola-Becker G. et al .
Influence of tumor biological factors on tumor cell dissemination in primary breast
cancer.
Anticancer Res.
2004;
24
4211-4216
31
Pantel K, Schlimok G, Angstwurm M. et al .
Methodological analysis of immunocytochemical screening for disseminated epithelial
tumor cells in bone marrow.
J Hematother.
1994;
3
165-173
32
Schlimok G, Funke I, Holzmann B. et al .
Micrometastatic cancer cells in bone marrow: in vitro detection with anti-cytokeratin
and in vivo labeling with anti-17-1A monoclonal antibodies.
Proc Natl Acad Sci USA.
1987;
84
8672-8676
33
Thor A, Viglione M J, Ohuchi N. et al .
Comparison of monoclonal antibodies for the detection of occult breast carcinoma metastases
in bone marrow.
Breast Cancer Res Treat.
1988;
11
133-145
34
Becker S, Becker-Pergola G, Fehm T, Emig R, Wallwiener D, Solomayer E F.
Image analysis systems for the detection of disseminated breast cancer cells on bone-marrow
cytospins.
J Clin Lab Anal.
2005;
19
115-119
35
Naume B, Wiedswang G, Borgen E. et al .
The prognostic value of isolated tumor cells in bone marrow in breast cancer patients:
evaluation of morphological categories and the number of clinically significant cells.
Clin Cancer Res.
2004;
10
3091-3097
36
Schmidt-Kittler O, Ragg T, Daskalakis A. et al .
From latent disseminated cells to overt metastasis: genetic analysis of systemic breast
cancer progression.
Proc Natl Acad Sci.
2003;
100
7737-7742
37
Gangnus R, Langer S, Breit E, Pantel K, Speicher M R.
Genomic profiling of viable and proliferative micrometastatic cells from early-stage
breast cancer patients.
Clin Cancer Res.
2004;
10
3457-3464
38
Klein C A, Blankenstein T J, Schmidt-Kittler O, Petronio M, Polzer B, Stoecklein N H,
Riethmuller G.
Genetic heterogeneity of single disseminated tumour cells in minimal residual cancer.
Lancet.
2002;
360
683-689
39
Fehm T, Sagalowsky A, Clifford E. et al .
Cytogenetic evidence that circulating epithelial cells in patients with carcinoma
are malignant.
Clin Cancer Res.
2002;
8
2073-2084
40
Schardt J A, Meyer M, Hartmann C H. et al .
Genomic analysis of single cytokeratin-positive cells from bone marrow reveals early
mutational events in breast cancer.
Cancer Cell.
2005;
8
227-239
41
Wong G YC, Yu Q Q, Osborne M P.
Bone marrow micrometastasis is a significant predictor of long-term relapse-free survival
for breast cancer by a non-proportional hazards model.
Breast Cancer Res Treat.
2003;
82
99
42
Pantel K, Schlimok G, Braun S. et al .
Differential expression of proliferation-associated molecules in individual micrometastatic
carcinoma cells.
J Natl Cancer Inst.
1993;
85
1419-1424
43
Meng S, Tripathy D, Frenkel E P. et al .
Circulating tumor cells in patients with breast cancer dormancy.
Clin Cancer Res.
2004;
10
8152-8162
44
Braun S, Hepp F, Kentenich C R. et al .
Monoclonal antibody therapy with edrecolomab in breast cancer patients: monitoring
of elimination of disseminated cytokeratin-positive tumor cells in bone marrow.
Clin Cancer Res.
1999;
5
3999-4004
45
Kirchner E M, Gerhards R, Voigtmann R. et al .
Sequential immunochemotherapy and edrecolomab in the adjuvant therapy of breast cancer:
reduction of 17-1A-positive disseminated tumour cells.
Ann Oncol.
2002;
7
1044-1048
46
Braun S, Naume J.
Circulating and disseminated tumor cells.
Clin Oncol.
2005;
23
1623-1626
47 Wiedswang G, Borgen E, Schirmer C, Karesen R, Kvalheim G, Nesland J M, Naume B.
Comparison of the clinical significance of occult tumor cells in blood and bone marrow
in breast cancer. Int J Cancer, in press
48
Muller V, Stahmann N, Riethdorf S. et al .
Circulating tumor cells in breast cancer: correlation to bone marrow micrometastases,
heterogeneous response to systemic therapy and low proliferative activity.
Clin Cancer Res.
2005;
11
3678-3685
49
Cristofanilli M, Budd G T, Ellis M J. et al .
Circulating tumor cells, disease progression, and survival in metastatic breast cancer.
N Engl J Med.
2004;
351
781-791
1 stellvertetend für die Kommission Tumorzelldissemination der Senologie
2 stellvertretend für DISMAL (Disseminated Malignancies) Projekt Konsortium (unterstützt
durch das European Community's Framework programme, LSHC-CT-2005-018911)
PD Dr. T. Fehm
Universitätsfrauenklinik Tübingen
Calwerstraße 7
72076 Tübingen
Phone: 070 71/2 98 22 11
Fax: 070 71/29 52 86
Email: tanja.fehm@t-online.de